私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:北京市昌平區高教園南三街9號北京航空航天大學實驗七號樓409
  • 郵編:102206
  • 電話:---
  • 傳真:
  • Email:zhengym@buaa.edu.cn
當前位置:> 首頁 > 論文著作 > 正文
Fog Collection on a Bio-inspired Topological Alloy Net with Micro-/ Nanostructures
作者:Xin Li, Yufang Liu, Hu Zhou, Chunlei Gao, Diansen Li,* Yongping Hou,* and Yongmei Zheng*
關鍵字:fog collection
論文來源:期刊
具體來源:ACS Appl. Mater. Interfaces 2020, 12, 5065?5072
發表時間:2020年


Because of the scarcity of freshwater resources, fog collection as one of the effective methods to solve this issue has attracted widespread concern. Inspired by several natural creatures with the capability to collect water from fog, the bio-inspired water-harvesting materials have aroused considerable attention and been widely developed. Inspired by the directional water droplets transportation to the apex on both shorebirds beaks and wheat awns, the bio-inspired topological alloy net with a V-shaped asymmetric geometry in its mesh was designed for fog collecting. Then, micro-/nano-hierarchical structures were modified on the surface of the netting wire via the cathodic electrodeposition method. Thus, the bio-inspired topological alloy net with micro/nanostructures was fabricated successfully. Through the integration of topological geometry and surface microstructure, not only the water-collection rate is improved by efficient drainage along the designated pathways, but also the issue of mesh clogging is resolved. In addition, a theoretical model was constructed to reveal the mechanism, especially the resultant force arising from the V-shaped structure. This work provides insight into the development of novel fog-collecting materials, which has potential applications in other fifields, such as liquid transportation, microfluidics, and interface science.

主站蜘蛛池模板: 镇平县| 都安| 凤庆县| 华坪县| 崇文区| 沁水县| 白沙| 宜君县| 大荔县| 颍上县| 昌吉市| 嘉荫县| 罗田县| 兴化市| 凉山| 闻喜县| 广德县| 荣昌县| 逊克县| 炉霍县| 仁布县| 界首市| 济源市| 进贤县| 莱西市| 涡阳县| 瓦房店市| 鸡东县| 榆树市| 治多县| 焦作市| 沙雅县| 什邡市| 朔州市| 洛扎县| 蚌埠市| 屏东市| 马边| 福建省| 大同县| 衡南县|